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Abstract
High throughput computing (HTC) has aided the scientific community in the analysis of vast
amounts of data and computational jobs in distributed environments. To manage these large
workloads, several systems have been developed to efficiently allocate and provide access to
distributed resources. Many of these systems rely on job characteristics estimates (e.g., job
runtime) to characterize the workload behavior, which in practice is hard to obtain. In this
work, we perform an exploratory analysis of the CMS experiment workload using the statistical
recursive partitioning method and conditional inference trees to identify patterns that charac-
terize particular behaviors of the workload. We then propose an estimation process to predict
job characteristics based on the collected data. Experimental results show that our process es-
timates job runtime with 75% of accuracy on average, and produces nearly optimal predictions
for disk and memory consumption.
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1 Introduction

Modern science often requires the processing and analysis of vast amounts of data and the vali-
dation of core principles through the simulation of complex system behaviors and interactions.
As applications and infrastructure are growing in scale and complexity, understanding their
behavior is a cornerstone for the development of efficient, reliable, and scalable systems.

The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) [4]
enables physicists to conduct data analysis on the wide range of particles and phenomena pro-
duced in high-energy collisions in the LHC. Data analyses are performed on the CMS computing
infrastructure, which uses HTCondor [19] as the underlying workload management system. It
allocates and manages computing and storage resources for the execution of computational
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jobs. Currently, the infrastructure processes millions of jobs submitted by hundreds of users
during month-long time frames. The efficiency of the workload execution and resource uti-
lization strongly depends on how these jobs are scheduled and resources are provisioned. The
scheduling problem is known to be an NP-complete problem [21], and thus many scheduling
heuristics have been developed to address this issue [11,18,20]. However, most of these heuristics
assume an accurate estimation of task characteristics, which in practice are hard to obtain. For
instance, the scheduling algorithm used for the CMS experiment assumes a fixed runtime esti-
mate for all of the users’ jobs. Recently, Sfiligoi [16] analyzed CMS historical data to define the
maximum and minimum runtime thresholds for predicting users’ job runtimes. Although the
analysis yields better estimates than user-provided estimates, job runtimes are not accurately
estimated, and thereby resource utilization and workload efficiency are not optimal.

In this work, we first characterize and profile (§ 2) resource usage of jobs executed by the
CMS experiment on a HTCondor pool. We apply statistical methods and machine learning
techniques to discover patterns that describe specific behaviors of job executions (runtime, disk
and memory usage). In particular, we extend the method proposed in our previous work [6]—
where statistical correlations, clustering, and decision trees are used to estimate workflow task
requirements—to identify statistical relationships between the workload properties, to build
regression trees, and to identify probability distributions that would fit subsets of the workload
(defined by regression tree leaves). Then, we propose a simple, yet practical, job estimation
process (§ 3) based on the analysis of the regression trees and the probability distributions
to estimate job requirements such as runtime, disk, and memory usage. Experimental results
(§ 4) show that our process leads to nearly optimal estimates for disk and memory usage, and
satisfactory accurate estimates for runtime when a small portion of the workload is used for
training. High accuracy is also attained when estimating future workloads from historical data.

2 Characterization and Profiling of the CMS Data

Studies presented in the following sections are based on the workload of the HTCondor pool
for the CMS experiment [2] deployed at the San Diego Supercomputing Center, for a period of
a month (Aug 2014). Table 1 summarizes the main characteristics of the collected workload.
The dataset consists of 392 users and 1,435,280 jobs, where 792,603 are completed jobs, 257,230
preempted jobs, and 385,447 have a non-zero exit code. Jobs ran on 15,484 execution nodes
belonging to 75 different execution sites. For the sake of privacy, any user-specific data had
been previously anonymized and not retained. Disk usage reports in HTCondor tend to be
behind real time. Therefore, the disk usage recorded refers to snapshots of the disk usage at
job runtime.

Characteristic Data
General workload Total number of jobs 1,435,280

Total number of users 392
Total number of execution sites 75
Total number of execution nodes 15,484

Jobs statistics Completed jobs 792,603
Preempted jobs 257,230
Exit code (!= 0) 385,447

Average Std. Deviation
Job runtime (in seconds) 9,444.6 14,988.8
Disk usage (in MB) 55.3 219.1
Memory usage (in MB) 217.1 659.6

Table 1: Characteristics of the CMS workload for a period of a month (Aug 2014).
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2.1 Data Preparation

Real-world data may be incomplete, noisy, and inconsistent, which can obscure useful pat-
terns [22]. For instance, profiling tools may not be able to collect and report the data once a
job is preempted; or user defined scripts may alter application execution wrappers to attach
an identification number for each execution. Data preparation is a fundamental stage of data
analysis, which involves verifying the data accuracy; transforming the data; and developing and
documenting a database structure that integrates the various measures. However, data prepa-
ration techniques cannot be fully automated, it is necessary to apply them with knowledge of
their effect on the data being prepared [14]. In this work, we used our prior knowledge about
the execution of scientific applications on HTC systems [7], and the knowledge of experts from
the UCSD team to the data preparation process.

A typical CMS analysis consists of the execution of collision readout events, which are stored
in files (approximately of the same size) logically grouped into datasets. In principle, all CMS
analysis uses the same software base, CMSSW, but users may define their own code, analyses,
etc. Nevertheless, this information cannot be gathered from the application execution program
name or arguments in the logs, thereby the typical workload characterization by application
name is not attainable. Each user submission is referred to as a task. The CMS Remote Analysis
Builder (CRAB) [1] splits the task into a set of jobs (balanced by the number of events), and
submits them to the HTCondor pool. Each job registers its task identification as the blTaskID

property. This identification, however, has often a job identification number, appended to the
task identification, for each job execution.

We assume that task identifications that follow a regular expression pattern are considered
the same. Task identifications are considered similar if they match in at least 50%. This
threshold is defined based on the knowledge about the data analyzed. For example, all task
IDs in the raw data follow the task id ### pattern, where ### is often replaced by the job
identification number or a random generated pattern. In this case, all matched patterns are
replaced by the first matched pattern (e.g., task id 001). Users are often logged as a path to the
HTCondor log file on the submit host. This path contains the username and often a reference
to the task ID. Thus, we also assume that usernames that follow a regular expression pattern
are considered the same. The similarity threshold is also set to 50% based on the knowledge
about the data analyzed.

2.2 Workload Execution Profiling

Although our workload consists of a 1 month period, it shows similar trends to the workload
analysis conducted in [16], which was collected over a period of 5 months and limited to a few
HTCondor queues. Correlations between users and job runtimes, as well as between a single
task and job runtimes, are equivalent in both workloads. Figure 1 shows the distribution of job
runtimes per user (Figure 1.a), and per task (Figure 1.b) for our workload. The mean value
(red line in the graph) shows that the magnitude of the job runtimes varies among users and
tasks. This result is thus used by the job estimation process (§ 3) to characterize the workload.

Figure 2 shows the distribution of job completion time rate. The workload has an average job
arrival rate of 2,406 jobs per hour (standard deviation of 1,507), and an average job completion
ratio of 2,438 jobs per hour (standard deviation of 1,457). The average job distribution per site
S̄ at an instant t is defined by the rate of the number of jobs allocated to a site and the number
of execution nodes available in the site as follows:

S̄(t) = 1
s ×

∑s

i=1

ji(t)
hi

(1)
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(a) Job runtimes by user, sorted by per-user mean
job runtime in seconds.

(b) Job runtimes by task, sorted by per-task mean
job runtime in seconds.

Figure 1: Job runtimes by user and task (red lines denote the mean value).
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Figure 2: Job completion time rate of the CMS workload. The X-axis depicts the month long
period covered by our dataset (Aug 2014). Colors represent different job status

where s is the number of sites, ji the number of jobs allocated to a site i at instant t, and
hi the number of available execution nodes at site i. In the workload, the total average job
distribution per site is S̄ = 0.89, which suggests that job distribution is relatively balanced
among sites.

Although preempted jobs represent about 18% of the workload, they are not considered
in this study, since they do not represent a complete execution and the data produced is
insufficient. The analysis of the causes for preemption is an interesting research subject, but
it is out of the scope of this work. Jobs with non-zero exit codes often represent error jobs,
but some scientific applications may use non-zero exit codes to represent specific behaviors of
successful executions. CMS job exit codes, however, represent execution errors [5], and thereby
the analysis of these jobs is also out of the scope of this work.

2.3 Workload Characterization

In order to estimate job requirements, we first characterize the dataset to identify behavior
patterns of the workload. Correlation statistics are enforced to the dataset to identify statistical
relationships between variables. A variable is defined as one property of the dataset (e.g., user).
Our dataset consists of 26 properties, thus the representation of each pair of correlations is not
shown in this paper. Since the CMS experiment uses a single application for all users, no
correlation can be determined between the property that defines the application (command) and
any other variable. Weak correlations between the memory usage (imageSize), diskUsage, and
job runtime (duration) with other variables suggest that none of the properties can be directly
used to predict future workload behaviors. Trivial correlations as for example between queueTime
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Figure 3: PDFs of job runtime (left), disk usage (middle), and memory usage (right).

and startTime or completionTime, or between remoteUserCpu and duration, for instance, are
strong but do not provide any value for job characteristics prediction. However, most correlation
measures are sensitive to the data distribution. Figure 3 shows the probability density function
(PDF) of job runtime (left), disk usage (middle), and memory usage (right) for the workload.
These probability functions do not fit any of the most common families of density such as the
Normal or Gamma distribution, which can be characterized by unspecified parameters (e.g.,
mean and variance). Therefore, we explore the statistical recursive partitioning method to build
decision trees, thereby dividing the dataset into smaller subsets.

The recursive partitioning method combines categorical (qualitative) and numeric (quantita-
tive) properties from the workload to build regression trees where the variance of the predicted
outcome (e.g., job runtime) is smaller than the original dataset. We use the results obtained
in Figure 1 and in [16] to drive the partitioning method. Since the magnitude of job runtimes
varies among users and tasks, we define the username as the root element of the regression
tree. We then use the CTree (Conditional inference Trees) [9] algorithm to build the subse-
quent levels of the regression tree: the size of the application program (executableSize), the
size of the input data (inputsSize), and the frequency the job restarted its execution due to
(numJobStarts). Figure 4 shows an example of a regression tree for one user of the dataset.
Terminal nodes show box plots of job runtimes. Although the standard deviation is smaller,
the estimation of job runtimes, for instance, based on the average still leads to high estimation
errors. The task identification (blTaskID) cannot be used here since each submitted task has a
unique identification associated to it [16]. Note that a regression tree is built for each of the
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Figure 4: Example of a regression tree for one user of the dataset. Box plots show the distri-
bution of job runtimes.
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Figure 5: PDF of job runtime for one branch of the regression tree shown in Figure 4.

estimates (i.e., runtime, disk usage, and memory). Our recursive algorithm stops if the PDF of
the subset fits a family of density, or if the variance is zero (e.g., job runtimes are constant). We
conduct the Kolmogorov-Smirnov goodness of fit test (K-S test) [3] to determine whether a dis-
tribution of the subsets fits a probability distribution. In this work, we conduct K-S tests where
the null hypotheses H0 are defined as the data subset fits a Normal or a Gamma distribution.
The two-sample KS test results in a miss if the null hypothesis is rejected at 5% significance
level (p-value ≤ 0.05). For each probability function that the null hypothesis is not rejected
(p-value > 0.05), we can then use the capabilities of these distributions to conduct further
analysis. For instance, Figure 5 shows the PDF of job runtimes for one branch of the regression
tree shown in Figure 4 (executableSize > 27 and inputsSize > 28). The PDF for the tree node
(in blue) fits a Gamma distribution (grey dashed line) defined by a shape parameter α = 12, a
rate parameter β = 5 · 10−4, and mean µ = 27, 414.8. The distribution has a p-value = 0.17 for
the K-S test, which does not reject the null hypothesis.

3 Job Estimation Process

The job estimation process is based on the analysis of the regression tree built for each user and
estimation parameter. Terminal nodes of the regression trees are expressed as rules. The rule
predicate is defined by the internal nodes (features) and a possible value of the feature. The rule
output is defined by the mean, standard deviation, the number of jobs within the subset, and
the result of the K-S test: whether the subset’s PDF fits a Normal or a Gamma distribution,
or none of them. For subsets that do not fit a distribution, values are generated according to a
Uniform distribution. Figure 6 shows the overview of this process. Job characteristics such as
the size of the application program and the size of the input data, are processed by a rule-based
matcher to extract distribution parameters that best fits the job characteristics.

The estimation process uses the Marsaglia’s polar method [12] to generate values from
a Normal distribution. The method transforms from a two-dimensional continuous uniform
distribution to a two-dimensional bivariate normal distribution. Suppose u and v are uniformly
and independently distributed in [−1,+1], then x and y have a normal distribution with mean

Figure 6: Overview of the job estimation process.
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µ = 0 and variance σ2 = 1:

x = u
√
−2 ln s
s , y = v

√
−2 ln s
s (2)

where s = u2 + v2. The method chooses random points (u, v) until s < 1. In this work, the
parameter µ (mean or expectation of the distribution) is defined as the median value of the PDF.
Therefore, we approximate the generated values (Equation 2) from the normal distribution to
x′ = µ+ σ · x, and y′ = µ+ σ · y, where σ is the standard deviation of the probability function.
Note that the method generates a pair of independent standard normal random variables. When
the estimation method asks for an estimate, x′ is returned and y′ is kept as a spare value for
the next invocation.

For generating values from a Gamma distribution, the process uses the Marsaglia and Tsang
method [13], since the shape parameter α ≥ 1 for fitted Gamma distributions in our dataset.
Methods for generating values from a standard Normal distribution and a Uniform distribution
are assumed to be available. Then, a gamma variate w can be generated as d · v, defined as:

d = α− 1
3 , v =

(
1 + x√

9·d

)3
(3)

where x is a generated value from a Normal distribution. Note that this method generates
Gamma variates for a scale parameter θ = 1. Therefore, we approximate w to:

w′ = θ′ · d · v, θ′ = 1
β (4)

where β is the rate parameter. Random variables generated from Uniform distributions are
upper and lower bounded by the standard deviation distance from the mean.

4 Experiments and Evaluation

The experiment presented hereafter aims at evaluating the accuracy of the estimation process
on predicting job requirements for the CMS workload such as runtime, disk, and memory usage.

4.1 Experiment Conditions

Trace analyzes were performed on the dataset to build regression trees for each user of the CMS
workload. To validate the estimation process, we built 11 distinguished sets of regression trees
differentiated by the size of the training set, which ranges from 5% to 95% of the total dataset.

We implemented a simple job analyzer that receives job characteristics and the set of regres-
sion trees (in the form of rules), and outputs random values generated from a Normal, a Gamma,
or a Uniform distribution. Regression tree sets derived from small training sets may not have
rules for all users of the workload. In this case, random values are generated from a Uniform
distribution, where the upper and lower bounds are defined by the maximum and minimum
values respectively, of the estimated parameter in the training set. We do not aim to evaluate
the efficiency of the estimation process algorithm or the process of building regression trees, but
the accuracy of our process. Here, accuracy is defined as 1−abs(actual−predicted)/predicted.

4.2 Results and Discussion

Figure 7 shows the average accuracy of the estimated parameters for the workload dataset, and
Table 2 shows the summary of the number of rules per distribution for each parameter. Job

7



Characterizing a HTC Workload: The CMS Experiment at LHC Ferreira da Silva et al.

(a) Job Runtime (b) Disk Usage (c) Memory Usage

Figure 7: Average accuracy of the workload dataset for job runtime, disk usage, and memory
usage estimation. The training set is defined as a portion of the entire workload dataset.

Training Set Runtime Disk Usage Memory Usage
# Jobs # Rules Normal Gamma Uniform # Rules Normal Gamma Uniform # Rules Normal Gamma Uniform

5% 39,415 122 2 8 112 147 32 0 115 129 57 0 72
10% 78,831 205 46 35 124 206 42 1 163 180 98 1 81
20% 157,662 329 55 76 198 419 178 1 240 323 186 1 136
30% 236,493 404 107 81 216 536 192 1 343 409 269 1 139
40% 315,324 452 108 127 217 598 200 1 297 464 288 1 175
50% 394,155 520 109 143 268 678 251 1 326 529 296 1 232
60% 472,986 614 106 246 262 842 319 1 422 622 297 1 324
70% 551,817 641 104 250 287 936 333 1 602 668 293 2 373
80% 630,648 743 109 347 287 1064 354 1 709 761 301 2 458
90% 709,479 865 110 448 307 1174 359 2 813 844 322 2 520
95% 748,894 897 114 455 328 1213 364 1 848 863 335 2 526

Table 2: Number of rules per distribution for job runtime, disk usage, and memory usage.

runtime estimation (Figure 7.a) requires substantial data to provide fairly accurate estimates.
This requisite is due to the high variability of job runtimes as shown in Table 1 (the standard
deviation is within 160% of the mean value). For small training sets, most of the estimates are
generated from Uniform distributions, which results in median accuracy values as low as 55%.
Better accuracy is achieved when there is enough data to determine that the majority of the
subsets (leaves of the regression trees) fits a Gamma distribution. A small training set of about
30% of the total dataset is enough to determine the subsets that fit a Normal distribution, but
it is not sufficient to attain estimates with good accuracy.

Disk usage estimation (Figure 7.b) requires much less information for performing nearly
optimal estimations. In contrast to the previous result, disk usage subsets fit mainly Normal
distributions. For small training sets (10% or less of the total dataset), the median estimation
accuracy is above 70%, but the first quartile yields accuracy values as low as 5%, which means
the accuracy of the estimates for most of the dataset is low. For larger training sets, the number
of rules indicating Normal distributions increases, and the estimation becomes more accurate.
However, for very larger sets (≥ 70%), there is significant increase in the number of rules
directly proportional to the number of suggested Uniform distributions. This burst is due to
the specialization of the partitioning algorithm, which tries to minimize the standard deviation.
Few outliers (O(100)) that are not within the 1.5 IQR (interquartile range) have low accuracy.
We conducted a separate analysis on these jobs to determine patterns that could distinguish
them from the other jobs, but no explicit pattern could be found. This result suggests that
the data collection process should be refined to gather finer information, or applications should
provide mechanisms to distinguish custom user codes from the standard executable.

Similarly, memory usage estimation (Figure 7.c) is mostly based on Normal distributions. In
fact, regression tree leaves that fit Normal distributions represent chunks of the PDF shown in
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Figure 3 (right). For the smallest training set (5% of the total dataset), our estimation process
results in estimates with 85% of accuracy for the first quartile. Nearly optimal estimates are
achieved by using 40% of the total dataset as the training set. For larger training sets, the
improvement in accuracy is negligible and there is a significant increase in the number of rules
that indicate Uniform distributions (for the same reasons of the disk usage estimation). We
also conducted a separate analysis of the outlier data, but no pattern could be found.

To measure the accuracy of our process in estimating future workloads, we also collected
the workload of the HTCondor pool for the CMS experiment for the month of October 2014.
The dataset consists of 1,638,803 jobs, where 810,567 are completed jobs submitted by 408
users. We then used the rules generated for the previous dataset (August 2014) to estimate job
characteristics for the new dataset. The process results in a median estimation accuracy of 82%
for job runtime, with 50% and 94% of accuracy for the first and third quartiles respectively.
Not surprisingly, nearly optimal estimates (over 98%) are attained for disk and memory con-
sumption. All the datasets and properties descriptions are available as part of the experimental
material included in the Research Object (RO) associated with this work [15].

5 Related Work

Several methods for predicting job runtimes were proposed, but their application to real sys-
tems is often impracticable or inaccurate. Fei et al. [8] proposed a multicluster and multicloud
resource management for resource provisioning. Their approach uses an auxiliary predictor
module that estimates job runtimes as the mean of the runtimes of the last two finished jobs
submitted by the same user. Sonmez et al. [17] studied job runtime and queue wait time
prediction methods and their application in grid scheduling. They evaluated time series pre-
diction methods when predicting job runtimes, and point-valued and upper-bound predictions
when estimating queue wait times. A comparison to scheduling techniques that do not use
prediction show that the use of these techniques does not imply better performance of the grid
scheduling. Khan et al. [10] proposed a method to characterize and predict workloads in a
cloud environment. Their method discovers and leverages repeatable workload patterns within
groups of virtual machines (VMs) that belong to a cloud customer. A method based on Hidden
Markov Modeling is used to capture temporal correlations and to predict the changes of work-
load pattern. The use of Markov-based techniques provides satisfactory accuracy for workload
prediction, but it adds a significant overhead to the application execution.

6 Conclusions

We presented a simple, yet practical, method to estimate job characteristics such as runtime,
disk usage, and memory consumption for the CMS workload. Our process is based on the anal-
ysis of regression trees built as a result of the use of statistical recursive partitioning method
for each user and estimation parameter. Regression trees are expressed as rules, which define
whether a subset of the dataset fits a probability distribution. The method was evaluated
through the analysis of the dataset where the accuracy of our process was measured in com-
parison with real values. We also measured the accuracy of our process to estimate future
workloads from historical data. Experimental results shows that our estimation process results
in adequate estimates for job runtimes, and nearly optimal estimates for disk and memory
consumption. Future work includes the analysis of the size of the historical data window used
to build the rules, the analysis of techniques for limiting the specialization of the partitioning
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algorithm, and the analysis of preempted and failed jobs. We will also investigate other disk
usage collecting mechanisms to better reflect the application’s disk usage over time.
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