Workflow Submit Nodes as a Service on Leadership Class Systems

George Papadimitriou, Karan Vahi, Jason Kincl, Valentine Anantharaj, Ewa Deelman, Jack Wells

Practice and Experience in Advanced Research Computing – PEARC20
July 30th, 2020

This work was funded by the US Department of Energy under Grants DE-SC0012636M, DE-AC02-06CH11357, DE-AC05-00OR22725
Background – Pegasus Workflow Management System

Automates complex, multi-stage processing pipelines

Enables parallel, **distributed computations**

Automatically executes data transfers

Reusable, aids **reproducibility**

Records how data was produced (**provenance**)

Handles **failures** with to provide reliability

Keeps track of data and **files**

NSF funded project since 2001, with close collaboration with HTCondor team
Background – Oak Ridge Leadership Computing Facility (OLCF)

- OLCF is supported by the US Department of Energy and offers leadership-class computing resources to researchers.

- It provides to users HPC resources, ranging from traditional x86 systems to systems with GPUs and ARM based processors.

- IBM AC922 Summit is OLCF’s flagship system with capability of 200 petaFLOPS.

- Strict security is enforced on the systems and 2-factor authentication processes has been adopted.

Reference: https://www.olcf.ornl.gov/
Motivation

• We want to make Pegasus workflows more accessible by OLCF users.

• Provide an easy way to target the Summit supercomputer and other OLCF’s resources.

Ideally: A solution that doesn’t require debugging and that works out of the box for all users.
Challenges

• Simple to use.

• 2-factor authentication.

• In HPC systems, workflow environments usually require expertise to build, setup and deploy.

• For every system that becomes available re-deployment is needed.

• Long-running processes might be prohibited by system administrators.
Approach – Kubernetes at OLCF

- **Kubernetes** is an open-source platform for running and coordinating containerized application across a cluster of machines.
- OLCF has deployed OpenShift, a distribution of Kubernetes developed by RedHat

 - OpenShift provides a **command line** and a **web interface** to manage your Kubernetes objects (pods, deployments, services, storage etc.)
 - OLCF’s deployment has **automation mechanisms** that allow users to submit jobs to the batch system and access the shared file systems (NFS, GPFS)
 - All containers run as an **automation user** that is tied to a project

References:
- https://www.redhat.com/en/topics/containers/what-is-kubernetes
Approach – Pegasus Workflow Submit Nodes as a Service
Approach – Pegasus Kubernetes Templates

Template Files
- Dockerfile
- pegasus-build.yml
- pegasus-pod.yml
- pegasus-service.yml

Customized Files
- Dockerfile
- pegasus-build.yml
- pegasus-pod.yml
- pegasus-service.yml

- User
- User ID
- Group
- Group ID
- Service Port

https://panorama360.github.io
Approach – Simplicity

Start a Kubernetes Service that will expose Pegasus’ submit pod’s services:

```
$ oc create -f Specs/pegasus-submit-service.yml
service/pegasus-submit-service created
```

Start a Kubernetes Pod with Pegasus and HTCondor:

```
$ oc create -f Specs/pegasus-submit-pod.yml
pod/pegasus-submit created
```
Approach – Benefits

- Containers and Kubernetes deployment templates simplify Pegasus workflow environments at OLCF.

- Pegasus submit nodes can be deployed as a service withing a few seconds.

- HTCondor’s BOSCO SSH style submissions on the DTNs achieve submissions to both the SLURM and LSF batch schedulers.

- A single workflow can access all OLCF’s compute resources.

- No long running processes on OLCF’s Login nodes!
Evaluation – Method

- We compare the Kubernetes solution with the “Login Node” and “rvGAHP” solutions
 - How much time do they need to be deployed?
 - Does the Kubernetes solution introduce any submission delays?
 - What limitation does the Kubernetes solution have?

- To evaluate submission delays we used the Nanodiamond Pegasus workflow created by spallation neutron source (SNS) scientists at ORNL.
 - Each workflow contains 11 compute jobs (8 MPI and 3 single core jobs).
 - We submitted 300 workflows and 990 compute jobs in total.
Evaluation – Pegasus on Login Nodes

- The Login Node deployment is a commonly used approach.
- A submission environment must be set up on the Login Nodes of the HPC system.
- Users need to execute long running processes on the Login Nodes.
- Security is not an issue since all the processes communicate inside the remote site’s network.
Evaluation – Pegasus using rvGahp

• The Reverse GAHP enables remote job submissions.
• It doesn’t require the remote resource to run services that accept incoming network connections or to accept SSH connections without 2-factor authentication.
• An SSH connection is established from the Remote Resource to the Submit Host allowing communications between the two ends with Unix sockets.

Reference: https://github.com/pegasus-isí/rvgahp

Southern California Earthquake Center

https://www.scec.org/article/522
Evaluation – Time to Deploy

![Diagram showing time to deploy for different systems]

- rvGAHP (Summit): ~2 days
- Summit Login Node: ~3 weeks
- Kubernetes: >3 weeks
Evaluation – Queue Delays, Overhead

Statistics from 990 compute jobs to the batch queues at OLCF!
Evaluation – Limitations

• Unlike “rvGAHP” the Kubernetes solution can only be used to submit workflows from within OLCF’s DMZ. (no remote submissions)

• It imposes restrictions on the number of running jobs a single project allocation can have.
 • OLCF applies per-user limits
 • Since all the workflows are submitted under the automation user, the number of jobs a project can run via the Kubernetes deployment is limited by the automation user limits.
Conclusion

• First time Pegasus users at OLCF can now deploy a working submission environment following a few well documented steps in less than 30 minutes.

• Users can maintain their own long running services without creating headaches for the system administrators.

• The deployment relies on OLCF’s automations and abstractions, providing access to the shared filesystem, Summit, RHEA and the DTNs.

• In comparison to “Login Node” and “rvGAHP” deployments, no overhead was added to submissions.
Try it out, it’s easy!

https://pegasus.isi.edu/tutorial/summit/

https://github.com/pegasus-isि/pegasus-olcf-kubernetes
Thank you!

George Papadimitriou
Computer Science PhD Student
University of Southern California
email: georgpap@isi.edu

Pegasus 5.0 will be released soon!
Pegasus Online Office Hours
https://pegasus.isi.edu/blog/online-pegasus-office-hours/