Producing a Multiwavelength Galactic Plane Atlas Using Montage, Pegasus and Amazon Web Services

Mats Rynge1, Gideon Juve1, Jamie Kinney2, John Good3, Bruce Berriman3, Ann Merrihew2, Ewa Deelman1

1USC Information Sciences Institute
2Amazon Web Services
3Infrared Processing and Analysis Center, Caltech
Science Goal

- Multiwavelength image atlas of the Galactic Plane, with coverage of 360° along the galactic plane and ±20° on either side
- 16 different wavelengths from 1 µm to 24 µm
- Each output image is 5° by 5° in size, and have an overlap of 1° with neighboring tiles
- Processed so that they appear to have been measured with a single instrument observing all 16 wavelengths - Cartesian projection
- When complete, the data will be released to the community via an API

<table>
<thead>
<tr>
<th>Survey / Bands (µm)</th>
<th>Coverage of 360° x 40° area</th>
<th>Output Size (TB)</th>
<th>Compute time (1,000s core hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2MASS (1.2, 1.6, 2.2)</td>
<td>100%</td>
<td>14.4</td>
<td>87</td>
</tr>
<tr>
<td>GLIMPSE (3.6, 4.5, 5.8, 8.0)</td>
<td>11%</td>
<td>2.0</td>
<td>60</td>
</tr>
<tr>
<td>MIPS-GAL (24)</td>
<td>8%</td>
<td>0.4</td>
<td>3</td>
</tr>
<tr>
<td>MSX (8.8, 12.1, 14.6, 21.3)</td>
<td>35%</td>
<td>6.8</td>
<td>36</td>
</tr>
<tr>
<td>WISE (3.4, 4.6, 12, 22)</td>
<td>100%</td>
<td>19.2</td>
<td>132</td>
</tr>
</tbody>
</table>
The Montage Image Mosaic Engine

- Toolkit written in ANSI-C for creating and managing image mosaics in FITS format.

- Portable and scalable – runs on desktops, grids and cloud computing platforms under *nix platforms.

- Code available through clickwrap license at Caltech.

- Widely adopted by astronomy and IT communities: used on desktops, integrated into processing pipelines, used in development cyber-infrastructure.
Pegasus Workflow Management System

- Builds on top of HTCondor and DAGMan.

- Abstract Workflows - Pegasus input workflow description
 - Workflow “high-level language”
 - Only identifies the computation, devoid of resource descriptions, devoid of data locations

- Pegasus is a workflow planner/mapper (“compiler”)
 - Transforms the workflow for performance and reliability
 - Automatically locates physical locations for both workflow components and data
 - Collects runtime provenance
Galactic Plane Workflow

16 hierarchal workflows
Each one with 1,001 subworkflows
Over 10M input files
45 TB output dataset

Subworkflow generator
Local Tile Setup

1 ... 1001

Montage 5 Degree Workflow

LEGEND

- mProjectPP
- mDiffFit
- mConcatFit
- mBgModel
- mBackground
- mlmgTbl
- mAdd
- mShrink
- mJpeg
System Overview

Published original survey data hosted at IPAC

Caching / rate limiting Squid server at ISI

Intermediate Files

Produced Dataset

Master

Worker

Worker

Worker

Worker

Worker
Numbers

- Amazon Web Services contributed the computations and storage
 - **hi1.4xlarge instance (the one we used)**
 - Memory optimized, with 2 x SSD ephemeral drives
 - 318,000 core hours
 - Spot instance price: $5,950
 - **cc2.8xlarge instance (benchmarked)**
 - Compute cluster optimized, with 4 ephemeral drives (2 used)
 - 274,000 core hours
 - Spot instance price: $2,200

<table>
<thead>
<tr>
<th>Survey / Bands (μm)</th>
<th>Coverage of 360°x40° area</th>
<th>Output Size (TB)</th>
<th>Compute time (1,000s core hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2MASS (1.2, 1.6, 2.2)</td>
<td>100%</td>
<td>14.4</td>
<td>87</td>
</tr>
<tr>
<td>GLIMPSE (3.6, 4.5, 5.8, 8.0)</td>
<td>11%</td>
<td>2.0</td>
<td>60</td>
</tr>
<tr>
<td>MIPSGAL (24)</td>
<td>8%</td>
<td>0.4</td>
<td>3</td>
</tr>
<tr>
<td>MSX (8.8, 12.1, 14.6, 21.3)</td>
<td>35%</td>
<td>6.8</td>
<td>36</td>
</tr>
<tr>
<td>WISE (3.4, 4.6, 12, 22)</td>
<td>100%</td>
<td>19.2</td>
<td>132</td>
</tr>
</tbody>
</table>
Questions?

rynge@isi.edu

- **Pegasus** - http://pegasus.isi.edu/
 - NSF funded
 - Open Source
 - Documentation, tutorial, and support available on website

- **Montage** - http://montage.ipac.caltech.edu/