Hosted Science:
Managing Computational Workflows in the Cloud

Ewa Deelman
USC Information Sciences Institute

http://pegasus.isi.edu deelman@isi.edu
The Problem

• Scientific data is being collected at an ever increasing rate
 • The “old days” -- big, focused experiments– LHC
 • Today “cheap” DNA sequencers – and an increasing number of them

• The complexity of the computational problems is ever increasing

• Local compute resources are often not enough (too small, limited availability)

• The computing infrastructure keeps changing
 • Hardware, software, but also computational models
Computational workflows -- managing application complexity

- Help express multi-step computations in a declarative way
- Can support automation, minimize human involvement
 - Makes analyses easier to run
- Can be high-level and portable across execution platforms
- Keep track of provenance to support reproducibility
- Foster collaboration—code and data sharing
So far applications have been running on local/campus clusters or grids.

SCEC CyberShake
- Uses physics-based approach
 - 3-D ground motion simulation with anelastic wave propagation
 - Considers ~415,000 earthquakes per site
 - <200 km from site of interest
 - Magnitude >6.5

~850,000 tasks
DNA sequencing, a new breed of data-intensive applications

Data collected at a sequencers
- Needs to be filtered for noisy data
- Needs to be aligned
- Needs to be collected into a single map

Vendors provide some basic tools
- you may want to try the latest alignment algorithm
- you may want to use a remote cluster

Challenges:
- automation of analysis, reproducibility
- Portability
- provenance

USERS!
Outline

- Role of hosted environments
- Workflows on the Cloud
 - Challenges in running workflows on the cloud
 - Data management aspects
- Hosted Science
 - Managing workflow ensembles on the cloud
 - Within user-defined constraints
- Conclusions

Acknowledgements: Gideon Juve (USC), Maciej Malawski (AGH), Jarek Nabrzyski (ND), Applications: Bruce Berriman et al (Caltech), Tom Jordan et al (USC), Ben Berman, James Knowles et al (USC Medical School), Pegasus Projects: Miron Livny (UWM), Gideon Juve, Gaurang Mehta, Rajiv Mayani, Mats Rynge, Karan Vahi, (USC/ISI)
New applications are looking towards Clouds

Originated in the business domain
Outsourcing services to the Cloud (successful for business)
Pay for what you use, elasticity of resources
Provided by data centers that are built on compute and storage virtualization technologies

Scientific applications often have different requirements
 - MPI
 - Shared file system
 - Support for many dependent jobs

Google’s Container-based Data Center in Belgium
http://www.datacenterknowledge.com/
Hosted Science

- Today applications are using the cloud as a resource provider (storage, computing, social networking)
- In the future more services will be migrating to the cloud (more integration)
 - Hosted end-to-end analysis
 - Data and method publication
 - Instruments

![Diagram]

- Infrastructure as a Service
- Databases
- Clusters
- Analysis as Service
- Workflow as Service
- Application Models
- Data and Publication sharing
- Social Networking
- Manpower
- Email
- Instruments
- Science as Service
The Future is Now
Illumnia’s BaseSpace

Data Analysis
BaseSpace now performs one alignment and variant detection for free on all Illumina data! To learn more about what’s included, click here.

BaseSpace makes data analysis easy. Push-button tools let researchers easily leverage all types of analysis applications and seamlessly view their results. Our flexible “app store” environment is being developed to bring the industry’s best tools to your fingertips, with new tools added constantly.

Currently, BaseSpace can perform the following analyses on your data:

- **RESEQUENCING ALIGNMENT**
 - Sequencing of an enriched portion of the human genome, or of a small genome (such as e.coli). Reads are aligned against the reference, and variants are noted.

- **AMPLICON SEQUENCING**
 - Sequencing of PCR amplicons from probes targeting particular genome positions (up to ~384 loc from up to ~96 samples).

- **DE NOVO ASSEMBLY**
 - Assembly of small (~200kb) genome from 16S ribosomal RNA reads without the use of a genomic reference.

- **SMALL RNA ANALYSIS**
 - Resequencing workflow applied to microRNAs.

- **LIBRARY QC**
 - Fast resequencing of a reference genome to QC the DNA library.

- **METAGENOMICS**
 - 16S metagenomic workflow used to classify organisms from a metagenomic sample by amplifying specific regions in the 16S ribosomal RNA. The main output of this workflow is a classification of reads at several taxonomic levels (kingdom, phylum, class, order, family, genus).

Workflow times include dual surface scanning and v2 kits.
Outline

- Role of hosted environments
- **Workflows on the Cloud**
 - Challenges in running workflows on the cloud
 - Data management aspects
- Hosted Science
 - Managing workflow ensembles on the cloud
 - Within user-defined constraints
- Conclusions
Issues

• It is difficult to manage cost
 • How much would it cost to analyze one sample?
 • How much would it cost to analyze a set of samples?
 • The analyses may be complex and multi-step (workflows)

• It is difficult to manage deadlines
 • “I would like all the results to be done in a week”
 • “I would like the most important analyses done in a week”
 • “I have a week to get the most important results and $500 to do it”
Scientific Environment
How to manage complex workloads?

Data Storage

Work definition

Local Resource

Campus Cluster
EGI
TeraGrid/XSEDE
Open Science Grid
Amazon Cloud
Workflows have different computational needs—need systems to manage their execution.

SoCal Map needs 239 of those

Peak # of cores on OSG 1,600
Walltime on OSG 20 hours, could be done in 4 hours on 800 cores

MPI codes ~ 12,000 CPU hours,
Post Processing 2,000 CPU hours
Data footprint ~ 800GB
Workflow Management

You may want to use different resources within a workflow or over time

- Need a high-level workflow specification
- Need a planning capability to map from high-level to executable workflow
- Need to manage the task dependencies
- Need to manage the execution of tasks on the remote resources

- Need to provide scalability, performance, reliability
Our Approach

● **Analysis Representation**
 - Support a declarative representation for the workflow (dataflow)
 - Represent the workflow structure as a Directed Acyclic Graph (DAG)
 - Use recursion to achieve scalability

● **System (Plan for the resources, Execute the Plan, Manage tasks)**
 - Layered architecture, each layer is responsible for a particular function
 - Mask errors at different levels of the system
 - Modular, composed of well-defined components, where different components can be swapped in
 - Use and adapt existing graph and other relevant algorithms
Use the given Resources

Data Storage

Data

Campus Cluster
EGI
TeraGrid/XSEDE
Open Science Grid
Amazon Cloud

Montage Galactic Plane Workflow

Remote Tile Setup
- Runs m2A/GalacticPlane on Compute node to generate the Click and Plasma Catalog with input UVS pointing to source at 3D.
- Runs for 40 minutes

Local Tile Setup
- Prepares the environment for running the montage sub-workflow.

Work definition
As a WORKFLOW

Workflow Management System
Local Resource
Challenges of running workflows on the cloud

Clouds provide resources, but the software is up to the user

Running on multiple nodes may require cluster services (e.g. scheduler)

Dynamically configuring such systems is not easy

 Manual setup is error-prone and not scalable
 Scripts work to a point, but break down for complex deployments

Some tools are available

Workflows need to communicate data—often through files, need filesystems

Data is an important aspect of running on the cloud
Outline

• Role of hosted environments

• Workflows on the Cloud
 • Challenges in running workflows on the cloud
 • Data management aspects

• Hosted Science
 • Managing workflow ensembles on the cloud
 • Within user-defined constraints

• Conclusions
Workflow Data In the Cloud

Executables
- Transfer into cloud
- Store in VM image

Input Data
- Transfer into cloud
- Store in cloud

Intermediate Data
- Use local disk (single node only)
- Use distributed storage system

Output Data
- Transfer out of cloud
- Store in cloud
Amazon Web Services (AWS)

IaaS Cloud, Services

- Elastic Compute Cloud (EC2)
 - Provision virtual machine instances
- Simple Storage Service (S3)
 - Object-based storage system
 - Put/Get files from a global repository
- Elastic Block Store (EBS)
 - Block-based storage system
 - Unshared, SAN-like volumes
- Others (queue, RDBMS, MapReduce, Mechanical Turk etc.)

We want to explore data management issues for workflows on Amazon
Applications

- **Not CyberShake** SoCal map (PP) could cost at least $60K for computing and $29K for data storage (for a month) on Amazon (one workflow ~$300)

- **Montage** (astronomy, provided by IPAC)
 - 10,429 tasks, 4.2GB input, 7.9GB of output
 - I/O: High (95% of time waiting on I/O)
 - Memory: Low, CPU: Low

- **Epigenome** (bioinformatics, USC Genomics Center)
 - 81 tasks 1.8GB input, 300 MB output
 - I/O: Low, Memory: Medium
 - CPU: High (99% time of time)

- **Broadband** (earthquake science, SCEC)
 - 320 tasks, 6GB of input, 160 MB output
 - I/O: Medium
 - Memory: High (75% of task time requires > 1GB mem)
 - CPU: Medium
Storage Systems

Local Disk
 RAID0 across available partitions with XFS

NFS: Network file system
 1 dedicated node (m1.xlarge)

PVFS: Parallel, striped cluster file system
 Workers host PVFS and run tasks

GlusterFS: Distributed file system
 Workers host GlusterFS and run tasks
 NUFA, and Distribute modes

Amazon S3: Object-based storage system
 Non-POSIX interface required changes to Pegasus
 Data is cached on workers
A cloud Condor/NFS configuration

The submit host can be in or out of the cloud
Storage System Performance

NFS uses an extra node

PVFS, GlusterFS use workers to store data, S3 does not

PVFS, GlusterFS use 2 or more nodes

We implemented whole file caching for S3
Cost Components

Resource Cost
Cost for VM instances
Billed by the hour

Transfer Cost
Cost to copy data to/from cloud over network
Billed by the GB

Storage Cost
Cost to store VM images, application data
Billed by the GB, # of accesses
Resource Cost (by Storage System)

Cost tracks performance
Price not unreasonable
Adding resources does not usually reduce cost
Transfer Cost

<table>
<thead>
<tr>
<th>Application</th>
<th>Input</th>
<th>Output</th>
<th>Logs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montage</td>
<td>4291 MB</td>
<td>7970 MB</td>
<td>40 MB</td>
</tr>
<tr>
<td>Broadband</td>
<td>4109 MB</td>
<td>159 MB</td>
<td>5.5 MB</td>
</tr>
<tr>
<td>Epigenome</td>
<td>1843 MB</td>
<td>299 MB</td>
<td>3.3 MB</td>
</tr>
</tbody>
</table>

Transfer Sizes

Cost of transferring data to/from cloud

Input: $0.10/GB
Output: $0.17/GB

Transfer costs are a relatively large

For Montage, transferring data costs more than computing it ($1.75 > $1.42)

Costs can be reduced by storing input data in the cloud and using it for multiple workflows
Outline

• Role of hosted environments
• Workflows on the Cloud
 • Challenges in running workflows on the cloud
 • Data management aspects
• Hosted Science
 • Managing workflow ensembles on the cloud
 • Within user-defined constraints
• Conclusions
Large-Scale, Data-Intensive Workflows

Montage Galactic Plane Workflow
- 18 million input images (~2.5 TB)
- 900 output images (2.5 GB each, 2.4 TB total)
- 10.5 million tasks (34,000 CPU hours)

An analysis is composed of a number of related workflows—an ensemble
Workflow Ensembles

Set of workflows

Workflows have different parameters, inputs, etc.

Prioritized

Priority represents user’s utility

Montage 2MASS galactic plane (John Good, Caltech)

2009 CyberShake sites (SCEC)

USC

San Onofre Nuclear Power Plant
Problem Description

How do you manage ensembles in hosted environments?

Typical research question:

\[
\text{How much computation can we complete given the limited time and budget of our research project?}
\]

Constraints: **Budget** and **Deadline**

Goal: given budget and deadline, maximize the number of prioritized workflows in an ensemble
Explore provisioning and task scheduling decisions

Inputs:

- Budget, deadline, prioritized ensemble, and task runtime estimates

Outputs:

Provisioning: Determines # of VMs to use over time

Scheduling: Maps tasks to VMs

Algorithms:

SPSS: Static Provisioning, Static Scheduling

DPDS: Dynamic Provisioning, Dynamic Scheduling

WA-DPDS: Workflow-Aware DPDS
SPSS

Plans out all provisioning and scheduling decisions ahead of execution (offline algorithm)

Algorithm:

For each workflow in priority order
Assign sub-deadlines to each task
Find a minimum cost schedule for the workflow such that each task finishes by its deadline
If the schedule cost ≤ the remaining budget: accept the workflow
Otherwise: reject the workflow

Static plan may be disrupted at runtime
Provisioning and scheduling decisions are made at runtime (online algorithm)

Algorithm:

- Task priority = workflow priority
- Tasks are executed in priority order
- Tasks are mapped to available VMs arbitrarily
- Resource utilization determines provisioning

May execute low-priority tasks even when the workflow they belong to will never finish

We assume no pre-emption of tasks
WA-DPDS

DPDS with additional workflow admission test:

- Each time a workflow starts
- Add up the cost of all the tasks in the workflow
- Determine critical path of workflow
- If there is enough budget: accept workflow
- Otherwise: reject workflow

Other admissions tests are possible

- e.g. Critical path <= time remaining
Dynamic vs. Static
Task execution over time

Dynamic

Static
Evaluation

Simulation
 Enables us to explore a large parameter space
 Simulator uses CloudSim framework

Ensembles
 Use synthetic workflows generated using parameters from real applications
 Randomized using different distributions, priorities

Experiments
 Determine relative performance
 Measure effect of low quality estimates and delays
Ensemble Types

Ensemble size

Number of workflows (50)

Workflow size

{100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000}

Constant size

Uniform distribution

Pareto distribution

Priorities

Sorted: Priority assigned by size

Unsorted: Priority not correlated with size
Performance Metric

Exponential score:

\[Score(e) = \sum_{w \in Completed(e)} 2^{-Priority(w)} \]

Key: High-priority workflows are more valuable than all lower-priority workflows combined:

\[2^{-p} > \sum_{i = p+1} 2^{-i} \]

Consistent with problem definition
Budget and Deadline Parameters

Goal: cover space of interesting parameters

\[
\begin{align*}
\min_{w \in e} \text{Cost}(w), \sum_{w \in e} \text{Cost}(w) \\
\min_{w \in e} \text{CriticalPath}(w), \sum_{w \in e} \text{CriticalPath}(w)
\end{align*}
\]

In all the experiments we assumed that the VMs have a price of z_1 per VM-hour. This price was chosen to simplify interpretation of results and should not affect the relative performance of the different algorithms. In this study we do not take into account the heterogeneity of the infrastructure since we assume that it is always possible to select a VM type that has the best price to performance ratio for a given application.

All the experiments were run with maximum autoscaling factor v_{\max} set to 1. After experimenting with DPDS and WA-DPDS we found that, due to the high parallelism of workflows used, the resource utilization remains high enough without adjusting the autoscaling rate. Based on experiments with the target applications, we set the SPSS...
Relative Performance

How do the algorithms perform on different applications and ensemble types?

Experiment:

Compare relative performance of all 3 algorithms on 5 applications

5 applications, 5 ensemble types, 10 random seeds, 10 budgets, 10 deadlines

Goal: Compare % of ensembles for which each algorithm gets the highest score
C = constant, PS = Pareto sorted, PU=Pareto unsorted, US=uniform sorted, UU=uniform
Inaccurate Runtime Estimates

What happens if the runtime estimates are inaccurate?

Experiment:

- Introduce uniform error of $\pm p\%$ for p from 0 to 50
- Compare ratios of actual cost/budget and actual makespan/deadline
- All applications, all distributions, and 10 ensembles, budgets and deadlines each

Goal: See how often each algorithm exceeds budget and deadline
Inaccurate Runtime Estimate Results

Cost / Budget

Makespan / Deadline

Runtime estimate error

DPDS
WADPDS
SPSS
Task Failures

Large workflows on distributed systems often have failures

Experiment:

Introduce a uniform task failure rate between 0% and 50%

All applications, all distributions, and 10 ensembles, budgets and deadlines

Goal: Determine if high failure rates lead to significant constraint overruns
Task Failure Results

Cost / Budget

Makespan / Deadline
Commercial clouds are usually a reasonable alternative to grids for a number of workflow applications

- Performance is good
- Costs are OK for small workflows
- Data transfer can be costly
- Storage costs can become high over time

Clouds require additional configurations to get desired performance

- In our experiments GlusterFS did well overall

Need tools to help evaluate costs for entire computational problems (ensembles), not just one workflows

Need tools to help manage the costs, the applications, and the resources
Summary II—looking into the future

There is a move to hosting more services in the cloud

Hosting science will require

- a number of integrated services
- seamless support for managing resource usage and thus cost and performance
- ease of use---can you do science as an app?

References: http://pegasus.isi.edu

Paper on ensembles at SC’12 in Salt Lake City

deelman@isi.edu