Pegasus is a system for mapping and executing abstract application workflows over a range of execution environments. The output is an executable workflow that can be distributed over a variety of resources (clouds, XSEDE, OSG, campus clusters, grids, workstations). Pegasus can run workflows comprising of millions of tasks. Pegasus WMS consists of three main components: the Pegasus mapper, DAGMan workflow engine, and Condor scheduler. Tasks are mapped to the execution resources by the Pegasus mapper based on static and/or dynamic information sources. Pegasus also automatically plans necessary data transfers and performs static optimizations such as task clustering. DAGMan manages the task execution order and provides workflow-level checkpointing and retries. Condor manages job execution on distributed resources.

Pegasus WMS

- Workflows are expressed in DAX (Directed Acyclic graph in XML)
- DAXes can be generated using Java, Perl or Python APIs
- Higher level workflow composition tools like Grayson, Wings, and Triana can also be used
- Integrated with HUBzero
- Scientists can use application-specific gateways such as CGGMD
- http://portal.nimhgenetics.org

Applications Using Pegasus

- **Astronomy and Physics:**
 - Galactic Plane workflow generates mosaics for astronomy surveys
 - LIGO workflows help detect gravitational waves
 - Periodogram workflows help detect extra solar planets
- **Seismology:**
 - CyberShake workflows for seismic hazard analysis of LA basin
 - Broadband workflows for accurate predictions of ground motions
- **Bioinformatics:**
 - Brain span workflows help study gene expression in the brain
 - RNA Sequencing workflows for generating Cancer Genome Atlas
 - SIPHT workflows to predict sRNA encoding genes in bacteria
 - Proteomics workflows for mass spectrometry based proteomics
- **Others:**
 - http://pegasus.isi.edu/applications

CyberShake Study 13.4

- 2013 Southern California seismic hazard study done by SCEC
- Ran across several large-scale compute resources
- NICS Kraken, NCSC Blue Waters, TACC Stampede
- 1144 workflows, 470M tasks, 32K jobs, 63.2 TB data, 12 M hours
- Used Pegasus-MPI-Cluster to run HTC tasks on HPC machines

Software Availability

- **Download Options:**
 - YUM repository with RPM packages
 - APT repository with DEB packages
 - Binary packages for Linux and Mac
- **Documentation / Training Materials:**
 - User Guide
 - Quickstart Guide
 - Tutorial with Virtual Machine
 - Software Carpentry Module

Pegasus Features

- Clustering of small tasks into batches for performance
- Optimized data transfers and support for many protocols
- Data reuse in case intermediate data products are available
- Automatic data cleanup to reduce data footprint
- Retries computations in case of failures
- Workflow-level checkpointing through data reuse and DAGMan
- Monitoring and debugging tools to support large workflows
- Workflow progress can be tracked through a database
- Support for workflow- and task-level notifications
- Stores provenance of data used and produced, and which software was used with what parameters
- Integrates with resource provisioners like glideinWMS
- Shell code generator compiles workflows into shell scripts
- Pegasus-MPI-Cluster enables fine-grained task graphs to be executed efficiently on HPC resources

http://pegasus.isi.edu

Pegasus WMS is funded by the National Science Foundation SI2 program grant #1148515.

Other Workflow

- Triana, Wings, Java, Perl or Python APIs
- *Directed Acyclic graph in XML*
- *Checkpoining*
- *Notifications*
- *Monitoring*
- *Logs*