Pegasus WMS: Enabling Large Scale Workflows on National CyberInfrastructure

Karan Vahi1, Ewa Deelman1, Gideon Juve1, Mats Ryeng1, Rajiv Mayani1, Scott Callaghan2 and Philip Maechling2

1University of Southern California’s Information Sciences Institute, 2University of Southern California – Southern California Earthquake Center

Overview

- Pegasus is a system for mapping and executing abstract application workflows over a range of execution environments.
- The output is an executable workflow that can be executed over a variety of resources (OSG, XSEDE, commercial and academic clouds, campus grids, clusters, workstation)
- Pegasus can run workflows comprising of millions of tasks.
- Pegasus Workflow Management System (WMS) consists of three main components: the Pegasus mapper, Condor DAGMan, and the Condor Schedd.
- The mapping of tasks to the execution resources is done by the mapper based on information derived from static and/or dynamic sources. Pegasus adds and manages data transfer between the tasks as required.
- DAGMan takes this executable workflow and manages the dependencies between the tasks and releases them to the Condor Schedd for execution.
- Pegasus automatically retries failed tasks in case of failures.

Pegasus Features

- The abstract workflow format (DAW) allows users to represent computations in a portable and infrastructure independent manner. Ideal for sharing!
- Clustering of small tasks into large clusters for performance reducing job scheduling overheads.
- Optimized data transfers and ability to use different protocols.
- Data reuse in case intermediate data products are available
 - workflow-level checkpointing
- Automatic data cleanup which reduces workflow data footprint
- Support for Workflow and Task level notifications (email, instant messenger, user defined script callout)
- Support for Shell Code Generator for local testing / debugging

Data Staging Configurations

- Shared Filesystem (Head Node and the worker nodes of execution sites share a filesystem)
- Non Shared Filesystem with Staging Site (Head Node and Worker Nodes don’t share a filesystem). Data is staged from an external staging site
- CondorIO (Head Node and Worker Nodes don’t share a filesystem). Data is staged from the submit host using Condor File Transfers

Monitoring and Debugging Capabilities

- Workflow progress can be tracked through a database.
- Database gets populated with workflow and job runtime provenance, including which software was used and with what parameters.
- Command line monitoring and debugging tools to debug large scale workflows.
- A Flask based web dashboard now allows users to monitor their running workflows and drill down to the jobs in a workflow and check their status and output.

Problem Description

- Builders ask seismologists: “What will the peak ground motion be at my new building in the next 50 years?”
- Seismologists answer this question using Probabilistic Seismic Hazard Analysis (PSHA)
- For each site in the input map, generate a hazard curve

Per site post processing workflow

- 410,000 tasks in the workflow
- Input Strain Green Tensor 40 GB
- Outputs about 11 GB per site
- CPU Time used: approx 800 hours

Runs on XSEDE in 2013 – CyberShake Study 13.4

- Hazard Map Covering 286 sites with (4 SGT combinations per site)
- Executed 1144 post processing workflows on Stampede
- Input Data: 1144 sets of SGTs x 40 GB/set = 44.7 TB
- Stored Output Data: 1144 sites x 11.6 GB/site = 13.0 TB
- Workflow Logs: 1144 sites x 4.9 GB/site

http://pegasus.isi.edu

Acknowledgments:

- Pegasus WMS is funded by the National Science Foundation OCI SDCI program grant #1148515.
- Condor: Miron Livny, Kent Wenger, University of Wisconsin Madison